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Phenomenological models of socioeconomic network dynamics
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We study a general set of models of social network evolution and dynamics. The models consist of both a
dynamics on the network and evolution of the network. Links are formed preferentially between ‘“‘similar”
nodes, where the similarity is defined by the particular process taking place on the network. The interplay
between the two processes produces phase transitions and hysteresis, as seen using numerical simulations for
three specific processes. We obtain analytic results using mean-field approximations, and for a particular case
we derive an exact solution for the network. In common with real-world social networks, we find coexistence
of high and low connectivity phases and history dependence.

DOI: 10.1103/PhysRevE.74.036106

I. INTRODUCTION

In recent years, physicists have paid much attention to
network structures—describing either technological infra-
structures or biological, genetic, logical, or social
relationships—as they play a prominent role in shaping the
nature of the processes taking place on them and the result-
ing collective behavior. Examples of how the structure af-
fects the function of networked systems include the impor-
tance of shortcuts in endowing finite-dimensional networks
of the small world property [1] and of scale-free degree dis-
tribution for robustness against failure [2] or the relevance of
motifs for specific dynamical properties [3].

Socioeconomic networks offer an example in which the
relation between structure and function is not unidirectional.
Indeed, their structure is inherently dynamical and it is
shaped by the incentives of agents, i.e., by the socioeco-
nomic functions provided by the network. This paper dis-
cusses a class of generic model of stochastic dynamical so-
cial networks that make the interplay between structure and
function of social networks explicit in a simple way. We
consider a set of agents—be they individuals or
organizations—who establish bilateral interactions (links)
when profitable. The network evolves under changing condi-
tions. That is, the favorable circumstances that led at some
point to the formation of a particular link may deteriorate
later on, causing that link’s removal. Hence volatility (exog-
enous or endogenous) is a key disruptive element in the dy-
namics. Concurrently, new opportunities arise that favor the
formation of new links. Whether linking occurs depends on
factors related to the similarity or proximity of the two par-
ties. For example, in cases in which trust is essential in the
establishment of new relationships (e.g., in crime or trade
networks), linking may be facilitated by common acquain-
tances or by the existence of a chain of acquaintances joining
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the two parties. In other cases (e.g., in R&D or scientific
networks), a common language, methodology, or comparable
level of technical competence may be required for the link to
be feasible or fruitful to both parties.

In a nutshell, our model conceives the dynamics of the
network as a struggle between volatility (that causes link
decay) on the one hand, and the creation of new links (that is
dependent on similarity) on the other. The model must also
specify the dynamics governing internode similarity. A rea-
sonable assumption in this respect is that such similarity is
enhanced by close interaction, as reflected by the social net-
work. For example, a firm (or researcher) benefits from col-
laborating with a similarly advanced partner, or individuals
who interact regularly tend to converge on their social norms
and other standards of behavior.

We study different specifications of the general frame-
work, each one embodying alternative forms of the intuitive
idea that “interaction promotes similarity.” Our main finding
is that in all of these different cases, the network dynamics
exhibits a rich phenomenology characterized by (a) sharp
phase transition, (b) resilience, i.e., stability against deterio-
rating conditions, and (c) equilibrium coexistence. The es-
sential mechanism at work is a positive feedback between
link creation and internode similarity; these two factors each
exerting a positive effect on the other. Feedback forces of
this kind appear to operate in the dynamics of many social
networks. We show that they are sufficient to produce the
sharp transitions, resilience, and equilibrium coexistence
that, as we will discuss in the next section, are salient fea-
tures of many socioeconomic phenomena. Finally, this phe-
nomenology bears a formal similarity with the liquid-gas
phase transition, thus suggesting that a classification in terms
of phases may be applicable also to socioeconomic networks.

The rest of this paper is organized as follows. The next
section discusses in an introductory way the empirical evi-
dence that our model addresses. In Sec. III, we outline the
general setup and a generic model of which we will discuss
particular realizations in the following sections. In particular,
we shall first discuss the case in which network formation
depends on the topology of the network (Sec. IV) and then
cases in which it is coupled with the dynamics of a continu-
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ous (Sec. V) or discrete (Sec. VI) variable. These two models
address situations in which homogeneity in some dimension
(e.g., technological levels or knowledge) or coordination (on,
e.g., a standard) play a crucial role, respectively. Numerical
simulations will be supplemented by mean-field analysis,
which provides a correct qualitative picture in all cases and,
in some cases, accurate quantitative estimates. A case in
which an exact solution can be derived will be described in
Sec. VII. In Sec. VIII, we end with some concluding re-
marks.

II. EMPIRICAL STYLIZED FACTS
OF SOCIOECONOMIC NETWORKS

There is a growing consensus among social scientists that
many social phenomena display an inherent network dimen-
sion. Not only are they “embedded” in the underlying social
network [4] but, reciprocally, the social network itself is
largely shaped by the evolution of those phenomena. The
range of social problems subject to these considerations is
wide and important. It includes, for example, the spread of
crime [5,6] and other social problems (e.g., teenage preg-
nancy [7,8]), the rise of industrial districts [9-11], and the
establishment of research collaborations, both scientific
[12,13] and industrial [14,15]. Throughout these cases, there
are a number of interesting observations worth highlighting.

(i) Sharp transitions. The shift from a sparse to a highly
connected network often unfolds rather “abruptly,” i.e., in a
short timespan. For example, concerning the escalation of
social pathologies in some neighborhoods of large cities,
Crane [7] writes that “...if the incidence [of the problem]
reaches a critical point, the process of spread will explode.”
Also, considering the growth of research collaboration net-
works, Goyal et al. [13] report a steep increase in the per
capita number of collaborations among academic economists
in the past three decades, while Hagerdoorn [14] reports an
even sharper (tenfold) increase for R&D partnerships among
firms during the decade 1975-1985.

(ii) Resilience. Once the transition to a highly connected
network has taken place, the network is robust, surviving
even a reversion to “unfavorable” conditions. The case of
California’s Silicon Valley, discussed in a classic account by
Saxenian [10], illustrates this point well. Its thriving perfor-
mance, even in the face of the general crisis undergone by
the computer industry in the 1980s, has been largely attrib-
uted to the dense and flexible networks of collaboration
across individual actors that characterized it. Another intrin-
sically network-based example is the rapid recent develop-
ment of Open-Source software (e.g., Linux), a phenomenon
sustained against large odds by a dense web of collaboration
and trust [16]. Finally, as an example in which “robustness”
has negative rather than positive implications, Crane [7] de-
scribes the difficulty, even with vigorous social measures, of
improving a local neighborhood once crime and other social
pathologies have taken hold.

(iii) Equilibrium coexistence. Under apparently similar
environmental conditions, social networks may be found
both in a dense or sparse state. Again, a good illustration is
provided by the dual experience of poor neighborhoods in
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large cities [7], where neither poverty nor other socioeco-
nomic conditions (e.g., ethnic composition) alone can ex-
plain whether there is degradation in a ghetto with rampant
social problems. Returning to R&D partnerships, empirical
evidence [14] shows a very polarized situation, almost all
R&D partnerships taking place in a few (high-technology)
industries. Even within those industries, partnerships are al-
most exclusively between a small subset of firms in (highly
advanced) countries [17].

From a theoretical viewpoint, the above discussion raises
the question of whether there is some common mechanism at
work in the dynamics of social networks that, in a wide
variety of different scenarios, produces the three features ex-
plained above: (i) discontinuous phase transitions, (ii) resil-
ience, and (iii) equilibrium coexistence. Our aim in this pa-
per is to shed light on this question within a general
framework that is flexible enough to accommodate, under
alternative concrete specifications, a rich range of social-
network dynamics.

III. THE MODEL

Consider a set N={1,...,n} of agents whose state and
interactions evolve in continuous time ¢. They form the
nodes of a network that is described by a nondirected graph
g(t) Clij:i e N, j e N}, where ij(=ji) e g(¢) iff a link exists
between agents i and j. The network evolution is modeled in
terms of continuous time stochastic elementary Poisson pro-
cesses, and it is therefore defined by specifying the rates at
which these processes occur [18]. First, each node i receives
an opportunity to form a link with a node j, randomly drawn
from A (i # j), at rate . If the link ij is not already in place,
it forms with probability

if dj()<d

_ (1)
€ if dy(n)>d

Plij — g()}=

where d;;(t) is the “distance” (to be specified later) between i
and j prevailing at ¢. Thus if i and j are close, in the sense

that their distance is no higher than some given threshold d,
the link forms at rate 7; otherwise, it forms at a much smaller
rate me. Secondly, each existing link ij € g(¢) decays at rate
A. That is, each link in the network disappears with probabil-
ity Ndr in a time interval [z,z+dt). We shall discuss three
different specifications of the distance d;;, each capturing dif-
ferent aspects that may be relevant for socioeconomic inter-
actions.

In all three cases, we mostly focus on the stationary state
behavior, which we shall illustrate using both numerical
simulations and a mean-field analytic approach. Concerning
the latter, we focus on the limit n — o, for which the analysis
is simpler. We characterize the long run behavior of the net-
work solely in terms of the stationary degree distribution
p(k), which is the fraction of agents with k neighbors. This
corresponds to neglecting degree correlations, i.e., to ap-
proximating the network with a random graph (see [19]), an
approximation that is reasonably accurate in the cases we
discuss here. The degree distribution satisfies a master equa-
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tion, which is specified in terms of the transition rates w(k
—k=1) for the addition or removal of a link, for an agent
linked with k neighbors. While w(k— k—1)=N\k always takes
the same form, the transition rate for the addition of a new
link

w(k —k+1)=29[e+ (1 - ©P{d;; < d}]

depends on the particular specification of the distance d;;.
Matching the link creation and removal processes yields an
equation for the degree distribution p(k). The probability

P{d; ;< d}, in its turn, will itself depend on the network den-
sity, i.e., on p(k). Our approach will then have the flavor of a
self-consistent mean-field approximation.

The coevolution of a population of agents and its social
network, based on a measure of social distance, has also been
studied in [20], though from a different perspective.

IV. SIMILARITY BY (CHAINS OF) ACQUAINTANCES

Consider first the simplest possible such specification
where d;;(t) is the (geodesic) distance between i and j on the
graph g(#), neighbors j of i having d;;(t)=1, neighbors of the
neighbors of i (which are not neighbors of i) having d(1)
=2, and so on. If no path joins i and j, we set d;;(t)=c°.

This specific model describes a situation in which the for-
mation of new links is strongly influenced by proximity on
the graph. It is a simple manifestation of our general idea
that close interaction brings about similarity—here the two

metrics coincide. We set d>n—2; the link formation process
then discriminates between agents belonging to the same net-
work component (which are joined by at least one path of
links in g) and agents in different components. Distinct com-
ponents of the graph may, for example, represent different
social groups. Then Eq. (1) captures the fact that belonging
to the same social group is important in the creation of new
links (say, because it facilitates control or reciprocity
[21,22)).

Consider first what happens when 7/\ is small. Let (k) be
the average connectivity (number of links per node) in the
network. The average rate n\{k)/2 of link removal is very
high when (k) is significant. Consequently, we expect to have
a very low (k), which in turn implies that the population
should be fragmented into many small groups. Under these
circumstances, the likelihood that an agent i “meets” an
agent j in the same component is negligible for large popu-
lations, and therefore new links are created at a rate equal to
nne. By balancing link creation and link destruction, the
average number of neighbors of an agent is (k)=2ne/\, as is
indeed found in our simulations (Fig. 1).

As 7m/\ increases, the network density (k) increases
gradually. Then, at a critical value (7/\);=1/2e—when
(ky=1—a giant component forms. The system makes a dis-
continuous jump (Fig. 1) to a state containing a large and
densely interconnected community covering a finite fraction
of the population. If /N decreases back again beyond the
transition point (7/\);, the dense network remains stable.
The dense network dissolves back into a sparsely connected
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FIG. 1. (Color online) Mean degree (k) as a function of \ (7 has
been set to 1) for e=0.2 when a'ij is the distance on the graph and
d>n-2. The results of a mean-field theory for n=2 (solid line) are
compared to numerical simulations (X) starting from both low and
high connected states with n=20 000. The dashed line corresponds
to an unstable solution of the mean-field equations that separates the
basins of stability of the two solutions. For finite n, the low-density
state “flips” to the high-density state when a random fluctuation in
(k) brings the system across the stability boundary (i.e., when a
sizable giant component forms). These fluctuations become more
and more rare as n increases. Inset: Phase diagram in mean-field
theory. Coexistence occurs in the shaded region whereas below
(above) only the dense (sparse) network phase is stable. Numerical
simulations (symbols) agree qualitatively with the mean-field pre-
diction. The high- (low-) density state is stable up (down) to the
points marked with X <& and is unstable at points marked with O
(+). The behavior of (k) along the dashed line is reported in the
main part of the figure.

one only at a second point (7/\),. This phenomenology
characterizes a wide region of parameter space (see the inset
of Fig. 1) and is qualitatively well reproduced by a simple
mean-field approach.

It is worth mentioning that a similar phenomenology oc-

curs when 3:2, i.e., when links are preferentially formed
with “friends of friends” [23]. In this case, however, the
probability that two arbitrary nodes i and j have d;;=2 is of
order 1/n in a network with finite degree. Hence for finite €
and A, a nonlinear effect manifests only for networks of finite
sizes [23].

We finally mention that the model with d=2 is reminis-
cent of a model that was recently proposed [24] to describe a
situation in which (as, e.g., in job search [25]) agents find
new linking opportunities through current partners. In [24],
agents use their links to search for new connections, whereas
here existing links favor new link formation. In spite of this
conceptual difference, the model in Ref. [24] also features
the phenomenology (i)-(iii) above, i.e., sharp transitions, re-
silience, and phase coexistence.
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Mean-field analysis

The transition rate for the addition of a new link is w(k
—k+1)=27e€ if the two agents are in different components
and w(k—k+1)=27% if they are in the same component,
where the factor 2 comes because each node can either ini-
tiate or receive a new link. In the large n limit, the latter case
only occurs with some probability if the graph has a giant
component G that contains a finite fraction vy of nodes. For
random graphs (see Ref. [19] for details), the fraction of
nodes in G is given by

y=1-¢(u), 2)

where
b(s) = 2 p(k)s* (3)
k

is the generating function and u is the probability that a link,
followed in one direction, does not lead to the giant compo-
nent. The latter satisfies the equation

u=¢'(w)/¢'(1). 4)

Hence u is the probability an agent with k neighbors has no
links connecting him to the giant component, and hence is
itself not part of the giant component. Then the rate of addi-
tion of links takes the form

wk—k+1)=27e+ (1 - eyl -u]. (5)

The stationary state condition of the master equation leads to
the following equation for ¢(s):

NG’ (s) =27le+ (1 - €)yld(s) - 2(1 — €) yd(us), (6)

which can be solved numerically to the desired accuracy.
Notice that Eq. (6) is a self-consistent problem, because the
parameters y and u depend on the solution ¢(s). The solution
of this equation is summarized in Fig. 1. Either one or three
solutions are found, depending on the parameters. In the lat-
ter case, the intermediate solution is unstable (dashed line in
Fig. 1), and it separates the basins of attraction of the two
stable solutions within the present mean-field theory.

The solution is exact where there is no giant component,
and numerical simulations show that the mean-field approach
is very accurate away from the phase transition from the
connected to the disconnected state. Near the transition to the
disconnected state, our approximation that an agent’s degree
fully specifies its state breaks down. This causes the theory
to overestimate the size of the coexistence region.

V. SIMILARITY OF KNOWLEDGE
AND TECHNOLOGY LEVELS

Next, we consider a setup where d;; reflects the proximity
of nodes i,/ in terms of some continuous (non-negative) real
attributes, h;(r),h(f). This case has been dealt with in Ref.
[26], which provides a detailed socioeconomic motivation
for the model. In short, the attribute /; could represent the
level of technical expertise of two firms involved in an R&D
partnership, or the competence of two researchers involved
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in a joint project. It could also be a measure of income or
wealth that bears on the quality and prospects of a bilateral
relationship. We assume that each agent i receives an at-
tribute update (or upgrade) possibility at a rate v. We focus
on the case in which the dynamics of #4; is much faster than
that of the network (¥>N\, 7). In the opposite limit, links
exist for too short a time span to have any correlated effect
on the dynamics of &;. If agent i receives an update opportu-
nity at time ¢, we posit that

hi(t*) = Dih}.j € Ni(0)} + n(0), (7

where 7,() is a random term capturing the idiosyncratic
change of expertise due to i’s own (say research) efforts. In
Eq. (7), the function D{-} captures some process of diffusion
(e.g., sharing of knowledge) in the current neighborhood
Ni(t)={j:ij € g(t)} of agent i.

Here we set the distance to be

dij = |]’ll - h]

b (8)
thus links are formed at the fast rate only if 4; and h; are

within d of each other.

We will take #,(r) to be Gaussian i.i.d. random variables
with zero mean and variance A. This random idiosyncratic
term competes with the homogenizing force of diffusion de-
scribed by the first term in Eq. (7). Concerning this term, we
will consider two alternative models.

A. Best-practice imitation

The first one, which we will label best-practice imitation
(BPI), has the revising player achieve a knowledge level
equal to the maximum available in her neighborhood. We
have in mind a situation in which individuals aim at improv-
ing in the direction of increasing /; and they may do this by
some on-site effort and also by learning from other individu-
als.

Formally, this is captured by the following definition:

D{h;,j € Ni(t) U {i}} = 'ma)(c)hj(t). 9)
JjeN(t

Notice that if i has no neighbor [N(f)= @], then D=h;. This
is equivalent to a directed polymer at zero temperature on the
(dynamic) network g(r) [27]. A related model, using the idea
of best practice imitation but with different noise, has been
studied in [29], but for randomly chosen neighbors at each
interaction (i.e., no network).

Figure 2 reports typical results of simulations of this
model. As in the two previous models, we find a discontinu-
ous transition between a sparse and a dense network state,
characterized by hysteresis effects. When the network is
sparse, diffusion is ineffective in homogenizing growth.

Hence the distance d;; is typically beyond the threshold d,
thus the link formation process is slow. On the other hand,
with a dense network, diffusion keeps the gaps between the
h;’s of different nodes small, which in turn has a positive
effect on network formation. As before, the phase transition
and hysteresis are a result of the positive feedback that exists
between the dynamics of the /; and the adjustment of the
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FIG. 2. Mean degree (k) (top) and growth rate v (bottom) as a
function of 7, found from numerical simulations of the model with
Eq. (9). Shown are simulations with n=500 (plusses) and 1000
(crosses). Arrows denote the approximate point at which the system
jumps from one phase to the other (this point can be dependent on
n). Here €=0.001, noise strength A=0.1, and similarity threshold
d=2. The system was run up to ¢=1000 for equilibration, then from
t=1000 to 1100 for data taking.

network. In the stationary state, we find that &(r)=(h,(z))
grows linearly in time, i.e., h,(r)=vt. Notably, the growth
process is much faster (i.e., v is much higher) in the dense
network equilibrium than in the sparse one, as shown in the
lower panel of Fig. 2.

This model exhibits an interplay between the process on
the network—the £,(r), which depends on the network—and
the network evolution, which depends on the A,(). It is this
interdependence and the corresponding positive feedback
that produces the discontinuous transition and phase coexist-
ence.

The similarity of the behavior of this model with that of
the previous section can be understood by analyzing a par-
ticular limit. Consider indeed the case in which 7;=1 with
probability a and 7,=0 otherwise. When va << 7, innovations
take place at a rate much smaller than that over which new
links form. In the limit where the dynamics of A; is fast
enough (v>7), we can assume that each new innovation
(i.e., each event 7;=1) taking place on a connected compo-
nent instantaneously propagates to the entire set of connected

nodes. Hence, if d< 1, link creation will occur with probabil-
ity 1 on nodes in the same connected component, whereas
nodes in different components will likely have distinct values
of h;, so that links will form at rate 7e. Note also that, in this
particular limit, the growth rate v is proportional to the size
of the largest connected component.

B. Conforming to neighbors
The second alternative considered has diffusion embody a

uniform merging of the neighborhood’s levels, formalized as
follows:
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FIG. 3. Mean degree (k) (top) and probability that two randomly
chosen nodes are within d of each other, 7 (bottom), as a function
of 7. Shown are simulations with n=200 (plusses) and n=500
(crosses). Also theory for the high connected phase (dashed line).
For large 7, the data points converge toward the theory curve as n
increases. Arrows denote the approximate point at which the system
jumps from one phase to the other. Here €=0.001, noise strength
A=1, and similarity threshold d=2. The system was run up to ¢
=1000 for equilibration, then from #=1000 to 1100 for data taking.

1
I h. , .
Din} = Wl.f%m A N7 D (10)

his A/z(t) =0 s

where |Ni(z)| is the number of agents in i’s neighborhood.
This second formulation can be conceived as reflecting a
process of opinion exchange (with no idea of relative “ad-
vance” in the levels displayed by different individuals)
[28,30]. Alternatively, it could be viewed as reflecting a con-
text where interaction payoffs are enhanced by compatibility
(say, of a technological nature) and agents will naturally tend
to adjust toward their neighbors’ levels. In these cases, inter-
action promotes conformity and conformism constrains the
creation of new links. At any rate, this specification of the
model allows us to understand how the results of the previ-
ous section depend on the directionality of the diffusion pro-
cess.

Figure 3 shows that this model exhibits the same generic
phenomenology of a sharp transition and the coexistence of
sparse and dense network phases. The key consideration, in
this case, is that when the link density is high, the distribu-
tion of A; in the population is narrow and hence link creation
proceeds at a relatively fast rate.

This intuition is captured by a simple mean-field ap-
proach. We will assume that the network can be well ap-
proximated by an Erdos-Renyi random graph with average
degree (k). When v> 5, \, we can assume that the distribu-
tion of h; adjusts adiabatically to the changing network. In
this limit, the dynamics is well described by the Edwards-
Wilkinson Langevin equation [31],
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hi=—L2 (hj—hi)+§i5—vzﬁi,jhj+§i~ (11)

This can be seen by considering a small time interval dt. If
vdt> 1, the number of updates on each site is large and can
be approximated with the central limit theorem with the two
terms in Eq. (11). In this equation, ;(¢) is a white noise term
with zero average and ((,-(t)g“j(t’)>=V2A5,-,j5(t—t’) and we
have introduced the (normalized) Laplacian matrix of the
graph L. The dynamics of this model is easily integrated in
the normal modes of the diffusion operator. In other words,
let v* be the eigenvectors of £, i.e., LU*=uv*. Then the
normal modes h*=2vh; satisfy

h* = — vuh* - ¢, (12)

where, in view of the orthogonality of the transformation
i— u, {* is again a white noise with the same statistical
properties of {;. The fluctuations of #* in the stationary state
are ((h“—(h“))%:ﬁ. Back transforming to the variables #;,
one finds that

A A [ d
(h=hy»=3 == Loy, (13)
a0 21 2 )

where p(u) is the density of eigenvalues of the Laplacian
matrix, which has been computed in the limit n— o0 [32].
Notice that we disregard finite-size clusters, which contribute
to a u=0 peak in the spectrum, assuming that the 4, value of
these nodes is broadly distributed so that d;, j>c7 whenever i
or j are not in the giant component. There is no simple closed
form for p(u), so one has to resort to numerical calculation.
To our level of approximation, it is sufficient to stick to a
simple approximation [32], where

1 1
p(M)=—7—TImm (14)

and T(u) is the solution of

1 kP(k)
0= tar o=k~ T

T(p) = (15)

with e— 0. The key features are that (i) the integral

RUK) = f 9B )
M

for Erdos-Renyi graphs is a function of the average degree
(k) alone, and (ii) the function R(c) decreases monotonically
and it diverges as ¢— 1*, when the giant component van-
ishes.

This allows us to estimate the probability

P{h; - hy| < d}y = (k) — Derf[d/N2vAR((K))],  (16)

where the 6 function implies that this probability vanishes
for disconnected graphs. Equating the link formation and re-
moval rate finally provides an equation for (k) that reads
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%(k) =e+(1- € 6((k) = Derf[d/\2vAR((k))]. (17)

Figure 3 reports the numerical solution of this equation for
the same parameters as in the simulations. This agreement is
reasonably good in view of the approximations made. Again
the mean-field approach overestimates the size of the coex-
istence region. The mean-field calculation reproduces the
main qualitative behavior, even though it (again) overesti-
mates the size of the coexistence region.

The emergence of features (i)—(iii) depends crucially on
the divergence of R((k)) on the average degree when (k)
~ 1. This divergence gets smoothed when v decreases, which
suggests that the discontinuous transition should turn into a
smooth crossover beyond a critical value v,. This scenario,
which is reminiscent of the behavior at the liquid-gas phase
transition, is indeed confirmed by numerical simulations.

VI. COORDINATING IN A CHANGING WORLD

We now consider a further specialization of the general
framework where link formation requires some form of co-
ordination, synchronization, or compatibility. For example, a
profitable interaction may fail to occur if the two parties do
not agree on where and when to meet, or if they do not speak
the same languages, and/or adopt compatible technologies
and standards. In addition, it may well be that shared social
norms and codes enhance trust and thus are largely needed
for fruitful interaction.

To account for these considerations, we endow each agent
with an attribute x;, which may take one of ¢ different values,
x;€{1,2,...,q}. x; describes the internal state of the agent,
specifying, e.g., its technological standard, language, or the
social norms she adopts. The formation of a new link ij
requires that i and j display the same attribute, i.e., x;=x;.
This is a particularization of the general Eq. (1) with d;;
given by

ij XX (18)

and 0<d < 1. For simplicity, we set e=0 since in the present
formulation there is always a finite probability that two
nodes display the same attribute and hence can link. We as-
sume each agent revises its attribute at rate v, choosing x;
dependent on its neighbors’ x;’s according to

Pe=n=g o8 B 0l 09)
Jiijeg(t)

where 3 tunes the tendency of agents to conform with their
neighbors and Z provides the normalization. This adjustment
rule coincides with the Kawasaki dynamics, which is known
to sample the equilibrium distribution of the Potts model of
statistical physics [33] with temperature T=1/(kgzB). Equa-
tion (19) has been used extensively, mainly for g=2, in the
socioeconomic literature as a discrete choice model [34-36].
This model describes a situation in which agents are en-
gaged in bilateral interactions, which, however, require a de-
gree of coordination among partners (i.e., x;=x;). The agents
attempt to improve their situation both by coordinating their
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value of x; with that of neighbors and by searching for neigh-
bors in their same state and linking with them. Link removal
models decay of links, e.g., due to obsolescence consider-
ations. The stochastic nature of the choice rule (19) captures
a degree of volatility or unmodeled features on which the
interaction depends (e.g., one might think that agent i might
have some advantage for choosing a given value of x; at a
particular time). From the point of view of statistical physics,
the presence of a nonzero “temperature” prevents the system
from getting stuck in imperfect states. We will consider these
effects in more detail below (see Sec. VII and Fig. 8) when
discussing the case 8— @ in greater detail.

This is another manifestation of our general idea that
network-mediated contact favors inter-node similarity. As in
Sec. V, we focus on the case in which such a similarity-
enhancing dynamics proceeds at a much faster rate than the
network dynamics. That is, »> 7, \ so that, at any given ¢
where the network g(¢) is about to change, the attribute dy-
namics on the x; have relaxed to a stationary state. The sta-
tistics of this state are those of the Potts model on the graph
g(2). For random graphs of specified degree distribution p(k),
the necessary statistics of the Potts model can be found
[37,38] and this makes an analytic approach to this model
possible. We shall first discuss an approximate theory to the
general case and then focus on a particular limit where the
model can be solved exactly.

Method of solution

Again we rely on the random graph approximation where
the network is completely specified by the degree distribu-
tion p(k). Now, however, the probability of two nodes being
in the same state if they are both in the giant component
depends on the magnetization of the giant component. The
master equation for a general node of degree k is

plk)y=Nk+ D)pk+1)+2yp(k—1)m(k - 1) — Nkp(k)
= 2qp(k)m(k), (20)

where (k) is the probability that a node of degree k is in the
same state as a randomly chosen node. This crucially de-
pends on whether the Potts spins are ordered or not. Indeed,
for sufficiently high B, the equivalence between the different
g spin states is broken in the stationary state of the Potts
model with temperature 1/(kgf). This is signaled by a non-
zero value of the magnetization

q<5x,1> - 1
m=—————
q-1
where the average is both on the nodes of the giant compo-
nent and on the stationary distribution. Without loss of gen-

erality, we can assume that x=1 is the state that is selected
and m>0 implies (8, ;) >1/q. Then it is easy to see that

; (21)

w0 =+ L mm, (22)
q q

where vy, u are defined in Egs. (2) and (4) and m(k)
=(q(6,1|k)=1)/(g—1). Note that (k) and m(k) depend on
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FIG. 4. Results from the analytic solution. Upper plot: Plot of
the degree distribution, p(k) for /\=4, showing also the Poisson
distribution with the same (k) for comparison (dashed lines). Note
that the degree distribution is not Poissonian. Lower plot: Plot of
the average magnetization of a node of degree k for 7/\=4, show-
ing that more highly connected nodes are, on average, more mag-
netized. ¢g=10.

k, more highly connected nodes being on average more co-
ordinated and magnetized (see Fig. 4).

With these equations we can find p(k) and (k) itera-
tively. Starting from a given p(k), we first compute the prop-
erties of the Potts model on a random network with such a
degree distribution, from which we get (k) in Eq. (22). This
with Eq. (20) in the stationary state [p(k)=0] allows us to
estimate x;,=p(k)/p(0) from the equation

[2nm(k) + Nk]x, — 2 (k= 1)x;_,
Xkl =
Nk+1)

iteratively, in terms of xy=1 and x;=2#%m(0)/\. Normaliza-
tion yields a new estimate of the degree distribution p(k)
=x;/2;x;,. We repeat this cycle until a stable solution p(k) is
found.

Figure 5 shows (k) and 7 plotted against temperature for
both simulations and theory. Note that the agreement is ex-
cellent despite the approximation made. As before, for high
n/\ there is a highly connected network with a giant com-
ponent, and for low 7/\ the network is sparsely connected.
For intermediate values of 7/\ the two states coexist, and
which one is found depends on the initial conditions for p(k).

Figure 6 shows a phase diagram (simulations and theory)
for S and #n/\. It can be seen that the theory is rather close to
the simulation results. The low uncoordinated region is a
Poisson random graph with (k)=27%/(\g). Starting in this
state, the transition to the highly connected, magnetized state
can only occur when there is a giant component, i.e., (k)
>1 so n>\gq/2. Hence the lowest point of the high connec-
tivity region of Fig. 6 is at =5 and 7=0. Although v
> 7, \, the simulations of the Potts model can still get into a
metastable unmagnetized state, even below the transition
temperature [38]. The temperature T at which this metastable
state becomes unstable is given by [38]
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FIG. 5. Upper plot: Plots of average degree ((k)) as a function of
“temperature” T=1/. Lower plot: Plots of the probability that two
randomly chosen nodes are in the same state (), as a function 1/.
All plots are for 7/A=4 (lower curves) and 7/N=10 (higher
curves). Points are results of simulations. ¢g=10 for n=1000.

(k%) + (g = 2)(k)
(k%) = 2(k)

The (uncoordinated) graph is Poissonian, (k?)={k)>+{(k).
Thus the transition curve is

exp(1/T) = (23)

B gexp(l/T) +qg-1

- 24
1= exp(UT) - 1 @4)

Monte Carlo simulations show that this theoretical line is
slowly approached as n is increased.

20

15

i

L I L
0 1 2 3 4 5 6

FIG. 6. Phase diagram in % (A=1) and T, showing the high and
low connectivity phases and the hysteretic region. Crosses are simu-
lations (n=5000, 10 000), plusses are theory, and the points are in
pairs, one on each side of the phase line. The curves are theory; the
leftmost curve is 7,.=(g/2)[exp(1/T)+q—1]/[exp(1/T)-1], which
is the expected transition line if the system gets stuck in the meta-
stable, unmagnetized state. The right curve is found using the nor-
mal method described above. Upper left: higher connectivity, coor-
dinated region. Lower right: lower connectivity, uncoordinated
region. The central region is the hysteretic region.
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VII. EXACT SOLUTION FOR T=0

The model with 8— o and €=0 can be described exactly.
We assume that in the initial state, links exist only between
nodes that have the same spin, o;=0;. The key intuition is
that the spin of site i can change only if k;=0, i.e., if the site
is isolated. Hence we can classify sites in disjoint subsets
N=NyU?_|N,, where

NO = {lkl = O},

N,={i:k;>0,0,=0}, o=1,....,q. (25)

The spins o; are frozen for all nodes i e N, with >0,
whereas nodes in N, have spin that is randomly updated at a
fast rate. Because e€=0, links can only be formed between
nodes i and j, which are either both in the same component
N, with >0 or both in N, provided they have the same
spin, or if one is in N, and one is in Ny, but has spin o,=0.
No link can be formed between ie N, and je N, with
o,0 >0.

When a link with a node in N, is formed, one or two
nodes pass from N, to some N,. Likewise nodes of N, that
lose their links move to N,. Such a dynamics, in the limit
n— %, is captured by the following evolution for the fraction

n, of nodes in set N, (0=0):

27y

. 27y
Ty = ;nona+ ?né - Npgily, o =1. (26)

Here p, is the degree distribution of nodes in N,, and

q
no=1- > n, (27)
o=1

is fixed by the normalization. The first term in Eq. (26) arises
from the process where a node of degree zero joins a node of
type o. The factor 2 is present because either node might
have initiated the link. The second term is the process in
which a node of degree zero joins another node of degree
zero. The factor 2 is present because n, increases by 2. The
dynamics of the degree inside a component is just that lead-
ing to a random Poissonian graph for k;>0. Hence p,, is
given by

k
c
=—"9— k=1, 28
po’,k (e(,-(r_ l)k' ( )
where the average degree
2 2
Co= L (29)
\g A

is obtained by balancing the average link creation rate
279(ns+ny/ q) with the link removal rate \c,, inside the com-
ponent N,. The equations above allow us to recast the dy-
namics in the form

. N, 271
l’la. =
271 —exp(-c,)][ \g

From this it is clear that in the stationary states, ¢, obeys

—cyexp(=c,)|. (30)
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27mny
Aq

(31)

Coexp(=cy) =

for o=1 to g. Moreover Eq. (29) implies with the constraint
q
2
Se, =2 (32)
o=1 A
In order to build a solution, let us notice that Eq. (31) has
two solutions (provided that 2 7n,<\ge~') which we denote
c,>1 and c_<1. Hence solutions can be specified in terms
of the number € of components with ¢,=c,. Then Eq. (32)
becomes

2
€c++(q—€)c_=%’. (33)

Equations (31) and (33) can be solved for any value of 7/\
and {.
The degree distribution for the whole network is given by

Un C+k C_k
P(k)=;[€ﬁ+(q—€)ﬁ}- (34)

The average degree can be written as

fci+ (g-0)?

o= be,+(g—0)c_’

(35)
We will now show that only the solutions with =0 and 1 are
dynamically stable. These are those that describe the behav-
ior of the model.

A. Stability analysis

The dynamics can be written as r,=f(ng,n,). Let n,
=ny,+e€, where n, is the solution derived above [i.e.,
f(i,,n9)=0] with c,=c, for c<¢{ and c,=c_ for 0> €. Here
€, 1s a small perturbation that, to leading order, satisfies

q
&=\ Ty, (36)
v=1
where T has matrix elements
-1 1 ¢
UV:M UV__|:—‘7+CU:|_ (37)
’ exp(cg) -1 ’ q exp(co) -1

A solution is stable if all eigenvalues of T are negative. For
the €=0 solution, c¢,=c_=2%/(\g) for all o, we find g—1
“transverse” eigenmodes (Z,€,=0) with eigenvalue u=—(1
—c_)/(e-=1) and one “longitudinal” mode (€,=¢€) with u
=—c_/(1—e™*). Both are stable (©<<0) so the €£=0 solution
is always stable, as long as c_<1, i.e., for 29p<\g [see Eq.
(33)].

It is also easy to find an unstable mode for solutions with
€=2 components in the c, state. Let c,=c, for o<¢ and
cy=c_ otherwise and consider “transverse” perturbations
with €,=0 for o>¢ and X_e,=0. These describe density
fluctuations among c, components. We find é,=A\ue with
pu=c.(c,—1)/(e“+=1)>0. This means that any perturbation
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of £>1 solutions with an imbalance between two or more
components with c¢,=c, will grow exponentially, thus lead-
ing to the collapse of all but one of the components.

B. The ¢=1 solution

Combining Eqgs. (31) and (33), the equation for c_ with
€=1 can be written as

29/N —qc_
- ezZ/x—T_q_] =0. (38)

This equation has no solution for #<< 7., where 7, is the
point where the maximum of the left-hand side of Eq. (38) as
a function of c¢_ becomes zero. Beyond this point (> 7,),
two solutions appear. The one with a larger value of c_
merges with the €=0 solution, as ¢c_—1 when n—\g/2.
This solution is unphysical as it describes a network where
c,, and hence the average degree, decreases with the net-
working effort % (or with decreasing volatility \). Indeed, a
detailed analysis of the linear stability reveals the presence of
an unstable mode [39].

The lower branch instead has c_—0 as n— % and it de-
scribes a physical solution with average degree increasing
with 7/\. Numerical analysis of the stability matrix shows
that this branch is indeed dynamically stable.

The critical point 7.(g) at which the €=1 solution con-
verges to N when ¢— 2 is the point where the €=0 solution
ceases to exist. So the transition is continuous for g=2 and
there is only one branch. For ¢=10 we find %,
=2.27989---\ and for large ¢ we find 7.><log gq.

In summary, the system has either one or two stable
states, depending on the values of ¢ and 7/\. For <7,
only the solution €=0 is stable; for 7>\g/2, only the solu-
tion €=1 is stable. Finally, in the interval 7,.<n<\g/2
there are two stable solutions. The coexistence region
[7.,Nq/2] shrinks to a single point when ¢g=2 and it gets
larger as g increases.

Figure 7 shows plots of (k) against 7/\ for g=10 for both
simulations and the theory described here.

Concerning the degree distribution, it is worth noticing
that the €=0 solution is characterized by a trivial Poisson
distribution for the whole random graph. Since (k)=c_<1,
there is no giant component and the system is composed of
many disconnected components of few nodes. The solution
with €=1 is, however, nontrivial. In this case, we have a
network whose p(k) is the sum of two Poisson distributions,
one of which has ¢,>1 and thus a giant component, while
the other (consisting of g—1 separate networks plus the k
=0 nodes) has ¢_<1 and thus has no giant component.

Even if €>1 states are unstable, they may occur in the
early stages of the stochastic evolution of the network. Fig-
ure 8 shows time-series plots of simulations for relatively
large 7 (=10,20), starting in an initially unconnected state.
Although the =10 solution eventually reaches its expected
value of (k)= 20, its approach to that value is not smooth, as
might have been expected. Rather, we find that the network
spends some time in an intermediate € >1 metastable state.
As we move to =20, the time spent in metastable states
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FIG. 7. Plots of the mean connectivity (k) as a function of 7/\.
Lines are theory, crosses are simulations, n=10 000, run to =100
for equilibration, then to =200 for data taking. For n=10 000 the
q=10 low state is unstable below the predicted value of 5 due to
fluctuations being significant for finite n. The crosses that do not lie
on the theory curves are systems that “jumped” during the data
taking.

increases substantially, failing to reach the stationary €=1
state (where (k)=40) despite the relatively long simulation
time. The reason for this behavior is that initially more than
one giant component forms, with different values of . This
state persists for a typical time f,,.,, Which is inversely pro-
portional to the eigenvalue of the unstable mode. Hence
tmea~ 1/ s~ e“+m/ (\c?) becomes very long when c, is large.
The reason why the dynamics is so slow depends on the fact
that in order for nodes to migrate from one component o to
another one, they have to lose all their links. Such a process
is limited by the density p,.; of nodes in component o with
k=1, which is very small when c, is large (p, ~e ).

In such a situation, introducing a stochastic element in the
agents’ choice (i.e., switching on 7>0) or allowing for the

F T T T T T T T T 3

20— -

o_
8
5
(=
(=)
3
g
g
o

FIG. 8. Plots of mean connectivity k against time for networks
starting in an initially unconnected state with n=5000 and ¢=10
and A=1. The curve on the top right is =20 and the other is 7
=10.
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formation of uncoordinated links (i.e., €>0) would make the
system converge very fast to the coordinated state. In other
words, this is a case in which a finite “temperature” may
allow the agents to find the global optimum more quickly
and it might be rational for agents to resort to a stochastic
choice rule. The ability to find an optimal state more quickly
is also of advantage if there are external (exogenous) shocks
that occasionally perturb the system.

C. Discussion

The T=0 case is of particular interest because it can be
solved exactly. For the other models described here, the co-
ordination and correlation of the nodes were too complex for
us to analyze exactly. In this section, we have solved exactly
a nontrivial network model. This was possible because of the
fact that an agent only changes its spin if it has degree zero.
The network is found to be the sum of g Poissonian random
graphs [40].

VIII. CONCLUSION

In this paper, we have proposed a general theoretical setup
to study the dynamics of a social network that is flexible
enough to admit a wide variety of particular specifications.
We have studied three such specifications, each illustrating a
distinct way in which the network dynamics may interact
with the adjustment of node attributes. In all these cases,
network evolution displays the three features (sharp transi-
tions, resilience, and equilibrium coexistence) that empirical
research has found to be common to many social-network
phenomena. Our analysis indicates that these features arise
as a consequence of the cumulative self-reinforcing effects
induced by the interplay of two complementary consider-
ations. On the one hand, there is the subprocess by which
agent similarity is enhanced across linked (or close-by)
agents. On the other hand, there is the fact that the formation
of new links is much easier between similar agents. When
such a feedback process is triggered, it provides a powerful
mechanism that effectively offsets the link decay induced by
volatility.

The similarity-based forces driving the dynamics of the
model are at work in many socioeconomic environments.
Thus, even though fruitful economic interaction often re-
quires that the agents involved display some “complemen-
tary diversity” in certain dimensions (e.g., buyers and sell-
ers), a key prerequisite is also that agents can coordinate in a
number of other dimensions (e.g., technological standards or
trading conventions). Analogous considerations arise as well
in the evolution of many other social phenomena (e.g., the
burst of social pathologies discussed above) that, unlike what
is claimed, e.g., by Crane [7], can hardly be understood as a
process of epidemic contagion on a given network. It is by
now well understood [41,42] that such epidemic processes
do not match the phenomenology reported in empirical re-
search. Our model suggests that a satisfactory account of
these phenomena must aim at integrating both the dynamics
on the network with that of the network itself as part of a
genuinely co-evolutionary process.
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One common feature of all the models discussed in this
paper is that stable states can have either a single giant com-
ponent or none. Many real situations are characterized by
stable states with a multitude of distinct components, barely
connected. One example is the polarization of opinion (e.g.,
in politics) where the tendency of individuals to have opin-
ions similar to those of the peers with whom they interact
may also lead to the segregation of the population in differ-
ent communities, of like-mined individuals. The results pre-
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sented here suggest that there must be a specific mechanism
responsible for such a polarization. We hope that future work
in this direction may shed some light on this issue.
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